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Potential Flow of a Film Down an Inclined Plate 
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S U M M A R Y  
The flow of a liquid film along a semi-infinite flat plate due to gravity is considered, the fluid being assumed inviscid 
and incompressible. When the Froude number Fr, based on the initial film thickness and velocity, is large compared 
to unity, solutions can be found by the method of matched asymptotic expansions. The fluid speed and deflection, 
and the pressure gradient are found to O(Fr-2). Hydraulic theory enters as the first term in the outer expansion, 
which is valid far downstream from the leading edge. When the liquid falls vertically, the motion represents half of a 
freely falling jet. 

1. Introduction 

The shooting motion of a liquid film along an inclined plate under the influence of gravity 
occurs often in nature and has many practical applications. Hydraulic theory provides a useful 
first approximation to this flow when viscous effects are negligible (e.g., when the extent of the 
motion is over a relatively short distance) and hydraulic jumps are absent. Keller and Weitz [ 1] 
sought to improve this theory by finding higher approximations, but a number of arbitrary 
constants arise which must be determined from initial conditions upstream. This paper con- 
siders a liquid film which is introduced at the leading edge of a semi-infinite flat plate with 
uniform supercritical speed qo and initial thickness b0. We seek potential solutions which are 
uniformly valid for large values of the Froude number Fr = qZ/gb o - 1/~, g being the acceleration 
of gravity. The effects of surface tension are ignored because the streamline curvature non- 
dimensionalized with respect to bo, is of the O(e 2) throughout the film (see Sec. 5). 

Recently Clarke [2] used the method of matched expansions to solve for the two-dimensional 
flow over a waterfall. The hydraulic approximation entered as the first term in an outer ex- 
pansion, valid far downstream from the edge. The inner expansion satisfied a uniform stream 
condition at an infinite distance upstream and the unknown constants in the outer expansion 
were determined by the matching technique. In practical cases, the initial conditions are applied 
at a place which, in the scale of the experiment, does not appear to be infinitely remote. It is 
of interest to know how this finiteness modification affects the simple hydraulic theory and its 
higher approximations. Ackerberg [3] has found that the determination of the viscous boundary 
layer flow along the plate depends on the pressure gradient in the potential flow which exists 
before the boundary layer penetrates the free surface. This pressure gradient can only be 
known with certainty by working out higher approximations to the hydraulic theory and this 
provided the motivation for this study. However, when the liquid falls vertically, the potential 
flow also represents half of a free falling jet, and this can readily be observed in nature without a 
plate boundary layer. There will, however, be very weak boundary layers along the free surface 
in which the vorticity will be of O(uo/boFr2). For Fr ~> 1, this is a small effect which can be 
neglected. Although the expansion methods in this paper are similar to some of those used by 
Ackerberg [4] in the study of jets, a number of new features arise here in applying initial con- 
ditions to problems in hydraulics. 

The stability of this flow for a viscous fluid is an open question. All stability analyses are 
based on the asymptotic shear flow which would be obtained after a potential flow, like the 
one considered here, is absorbed by the boundary layer. Visual observations (by the author) 
indicate that a smooth flow does exist along the initial portion of a spillway surface and it is 
likely that these potential flows do occur in nature. 
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In Sec. 2 the problem is formulated mathematically in the plane of the complex velocity 
potential using the logarithm of the complex velocity as the dependent variable. The outer 
expansion, based on streamwise distances of the O (bole), is found in Sec. 3 using the hydraulic 
approximation as the lowest order term. The initial condition cannot be satisfied by this 
expansion to O(e 2) for any choice of the arbitrary constants and an inner expansion is required 
to remove this non-uniformity. Matching of the expansions fixes two unknown constants 
which appear in the outer expansion to O (g2). Finally in Sec. 5, the streamline curvature and 
the pressure gradient are determined to O (~2) using composite expansions constructed from 
the inner and outer expansions. 

2. Mathematical Formulation 

Choose a coordinate system Z = X + iY with the plate lying along the + X-axis and origin at 
the leading edge (see Fig. 1). Gravity acts in a direction which makes an angle a with the plate. 
A complex velocity potential W(Z)  = cb + i ~  and a complex velocity d W / d Z =  U - i V  must be 

Y 

p~p~ 

Q 

'B 
\ 

X 
Figure 1. Flow Geometry. 

found such that: 1) the pressure on the free surface AB is constant; 2) V vanishes along the 
plate Y=0;  3) at the leading edge X=0,  the fluid speed q=qo for 0_< Y_< bo. The assumption 
Fr >> 1 obviates the necessity of specifying boundary conditions downstream which are usually 
required in potential problems. 

Non-dimensionalize the coordinates, the complex velocity potential, and the complex 
velocity as follows: 

Z = X -}- i y  : Z / ( m / q o )  , W = q) -}- i~l : W / m ,  d w / d z  = u -  it) : q e - i o  = q o  1 d W / d Z .  (2.1) 

Here m is the volumetric flux per unit breadth which equals boqo to first order, as we will see. 
Since the location of the free surface AB in the physical plane is unknown to start with, it is 
convenient to formulate this problem in the plane of the complex velocity potential. The image 
of the physical plane is shown in Fig. 2 ; by an appropriate choice of constants the origins can 
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be made to correspond. The curved line OA which is the trace of x = 0, y > 0 will be discussed 
later. 

Introduce the logarithm of the complex velocity 

F(w ; ~:) = In (dw/dz) = Q (~o, ~ ; e) - iO (~o, 0 ; e). (2.2) 

By the usual arguments the real and imaginary parts o f f  satisfy the Cauchy-Riemann equations 
and are conjugate harmonic functions of (% 0). 

Boundary Conditions 

Along the wall OC the deflection is fixed; thus, 

0(% 0)=0 for (p>0.  (2.3) 

The initial condition requires 

Q = 0  for x = 0 ,  0 < y < l .  (2.4) 

To apply this equation in the w-plane, we require the image of the line x = 0, 0 < y < 1. This may 
be found using (2.1) when 

dx = Re (em dw/q) = 0. (2.5) 

Thus, the integral of the equation 

do/d O=tanO(~o,O) with (p=0 when 0 = 0 ,  (2.6) 

fixes the line OA in the w-plane. Since (2.6) involves the unknown function 0, the integration 
cannot usually be carried out. In the asymptotic analysis given here, the lowest order term of 0 

~k 

x : O J  
Q:O 

(~/2) cos a 

P:P: ~'B 

0--0 c , 4  ~ 

Figure 2. Plane of the Complex Velocity Potential w. 

is particularly simple and the first approximation to this line is easily found. 
On the free surface AB the pressure is constant. From Bernoulli's equation 

p/p+�89 cos ~ - y  sin c~) = i F ,  (2.7) 

where the total head Jt ~ has the same value for all streamlines. This value may be determined 
from conditions at A (x = 0, y ~ 1) where q = 1 and p = Po ; thus, 

H = po/P+�89 sin e .  (2.8) 
A useful boundary condition in terms of Q and 0 may be derived from (2.7) by differentiating 
partially with respect to (p, putting ~ = 1, and noting (~p/Oqo)o= 1 = 0 ;  thus 

q(Oq/&p)-e[cos ~(Ox/Ocp)-sin c~(~y/0q0)] = 0 on 0 = 1. (2.9) 
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Using q = e  e and (2.1), this may be written 

0Q/~q)-/3e-3e(cos c~ cos 0 - s i n  e sin 0) = 0 on 0 = 1. (2.10) 

This is Levi-Civita's form of the free surface condition. Therefore, the mathematical problem 
is to find harmonic functions Q and 0 which satisfy the boundary conditions (2.3), (2.4), and 
(2.10). Since (2.10) is non-linear, this is too difficult for the most general case. When/34 1 
asymptotic solutions can be found by the method of matched expansions. 

3. The hydraulic approximation and the outer expansion 

According to hydraulic theory, the fluid will be in free fall in the first approximation. Therefore, 

. = ( 1 + 2 ~ x  cos ~)~ ,  ~ = o ( 1 ) ,  (3.1) 

and from (2.7) the pressure variation to first order is hydrostatic. The initial condition (2.4) is 
satisfied to lowest order and this first approximation is uniformly valid. To improve this theory, 
it is convenient to use (q~, 0) as independent variables. Noting that q=V~0, (3.1) asserts that 
(o does not vary in the y-direction to first order. Thus, u =  O(o/Ox can be integrated to give 
q~ (x) [with (p (0)= 0] and q ((o) ~ u (~o) may be found. Carrying this out, we obtain to first order 

Q((p, 0) = In q ~ (�89 + 3/3(p cos c~). (3.2) 

This solution suggests that a new independent variable should be introduced in place of ~o 
which remains of O(1) when q) is large; therefore, define 

(p* = e(p. (3.3) 

0, being a measure of the volumetric flux in the film, remains of O(1) and need not be scaled. 
The outer expansion results formally by assuming 

Q (qo, 0 ;/3) ~ Qo (~o*, 0) +/3Q~ (~o*, 0) +/32 Qz ((o*, 0) + . . - ,  (3.4) 

0(~o, 0;/3) -/30o(q~*, 0) +/32 o~ (q~*, 0) +/3~ 0~(~o*, 0) + . . . .  (3.5) 

Expressing the Cauchy-Riemann equations in the variables (q~*, 0) yields 

@Q/ O(o* = - 00/ 00 , (3.6) 

0Q/00 =/3~0/0(p*. (3.7) 

Substituting (3.4) and (3.5) into (3.6) and (3.7) and equating the coefficients of each power of/3 
to zero gives 

OQo/OO = 0, (3.8) 

0Q1/~30 = 0, (3.9) 

o00/o0 = - ~Qo/0q,*, (3.10) 

oo l /  oO = - OQ ~/ O~* , (3.11) 

0Q2/00= ~0o/0~o*. (3.12) 

After integration, these equations yield 

Qo = Qo(cp*), (3.13) 

Q~ = Q~ (q~*), (3.14) 

0o = - 0Q~ ((p*), (3.15) 

01 = -0Q](~o*),  (3.16) 

Q2 = - (�89 Q~((p *) +a(tp*).  (3.17) 
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Here primes denote differentiation with respect to go* and a (go*) is an unknown function to be 
determined. In obtaining (3.15) and (3.16) arbitrary functions of go* were omitted to satisfy 
the boundary condition (2.3). 

When (2,10) is transformed to the variables (go*, ~), we obtain after substituting the expansions 
(3.4) and (3.5), using (3.13)-(3.17), and equating the coefficients of each power of e to zero 

Q~ = e - 3Q~  Cos ~ ,  (3.18) 

Q'I+3e-3Q~ cos ~ = e-3Q~ sin c~, (3.19) 

l f g 3 - ,  • 3Qo a' + 3e- 300 a cos c~ = 2 t ~o ~ e-  [-3Q~ cos ~ - Q~2 cos ~ + 2Q'1 sin 

+9 Q2 cos ~ - 6  Q'oQ1 sin c~]). (3.20) 

After integration we obtain 

Qo = (�89 p,  (3.21) 

Qa = (sin ~/3 p)In p+ cl/p, (3.22) 

a = - (6 p2)-1 {(8 COS 2 (X -1- 2 sin e ct-- 12 c I sin c~ + 9 c12) 

+ (6 ca sin c~--4 sin 2 ~)(1 + ln  p)+ sin 2 ~[-(1 + ln  p)2+ 1]} +c2/p, (3.23) 

where 

p(go*) = c+3  go* cos ~, (3.24) 

and c, Ca, and c2 are constants of integration. A comparison of(3.21) with (3.2) shows that c = 1. 
To apply the initial condition (2.4), a solution of (2.6) is required. Substituting (3.5), (3.15), and 

(3.21) into (2.6) we obtain after integrating, applying the boundary condition, and retaining the 
highest order term 

go* ~ -e2(cos ~/2)ff 2 on x = O, y > 0 .  (3.25) 

Substituting this result into (3.4), using (3.21)-(3.24) and expanding for e~O, we obtain 

Q ~ eCl-~-g2[-@ 2 c o s  2 c~+a (p= 1)] - t -O(g  3) o n  x = 0, y > 0 ,  (3.26) 

where 

a (p = 1) = - ( 8  cos 2 c~-6 c 1 sin c~ + 9 c2)/6 + c2. (3.27) 

The boundary condition (2.4) requires that the coefficients of each power of e in (3.26) vanish for 
0 < ~ < 1. For c~ r re/2, this is clearly impossible and our method of successive approximation 
has failed. At best we could choose cl = 0 and satisfy the boundary condition to O (e) ; however, 
this value of ca will be obtained from the matching procedure. 

4. The inner solution 

To satisfy the initial condition (2,4) an inner solution, valid near the leading edge, is required. 
The characteristic length in this region will be bo, and the asymptotic expansions should be 
based on the independent variables (g0, ~). The first term in the inner expansion for Q can be 
deduced from Qo(go*) when go*~0 [-see (3.21)] because of its uniform validity. Therefore, we 
assume 

Q(go, cos Q+ (q,, 

0(go, - c o s  0 + (go, + . . .  

From (2.2) it follows that Q+ and 0 + are harmonic; thus 

VZQ + = 0 = V 2 0  + , 

(4.1) 

(4.2) 

(4.3) 
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The boundary condition (Z3) requires 

0+(q~,0)=0 for ~o>0.  

or in terms of Q + 

OQ+/&p=O for q~>0, 0 = 0 .  (4.4) 

Substituting (4.1) and (4.2) into (2.10) we obtain 

~Q+/~o = sin a cos c~-3 ~o cos 2 c~ on 0 = 1. (4.5) 

If (4.2) is substituted into (2.6) and integrated, we obtain (3.25) with q0* replaced by ecp, i.e., 

( p = - e ( c o s c ( 2 ) O  2 on x = 0 ,  y > 0 .  (4.6) 

This is the line OA shown in Fig. 2. The initial condition (2.4) will be satisfied if 

Q(qo,~p;e)=0 when q~=-e(cosc~/2)O 2, 0 < ~ < 1 ,  (4.7) 

for each power of e. When (4.1) and (4.6) are substituted into (4.7) we obtain 

e 2 {Q + [O(e), 0] - 02 ( cos2 c(2)} + o(e 2) = 0.  (4.8) 

If Q+ is regular when ~o~0, this becomes 

Q+(0, O)=O2(cosZc(2) for 0 < ~ < 1 .  (4.9) 

q, 

dco, q,~. q,'(co ~/2) 

o Q ~  = s ine  cos e - 3r COS 2 e 

vZ0 +-- 0 

o ooy0~,=o --4, 

Figure 3. Boundary Value Problem for Q+. 

A harmonic function Q+ which satisfies the boundary conditions (4.4), (4.5), and (4.9), and 
which diverges least rapidly when ~o--,ov (see Fig. 3) is 

Q+ (~P, 0 ) =  (3 cos z a /2 ) (02-  ~p2)+q~ sin c~ cos a - c o s  2 e+H(~o, 0)cos 2 a ,  (4.10) 

where H is a solution of the following boundary value problem : 

v2/-/= 0 o__<~__<~, o < 0 < 1 ,  (4.11) 

H(cp, 1 ) :  0 ~o > 0 ,  (4.12) 

OH/&p=O on 0 = 0 ,  q~>0,  (4.13) 
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H(0, 0) = 1 - 0 2  0 <  ~b< 1, 

H(~0,0)-~0 for (p~oo, 0 < 0 < 1 .  

On solving for H by separation of variables we obtain 

H(cp, 0) = ~ d, exp [ -  (2n + 1)rc~0/2] cos [(2n+ 1)r&/2], 
n=0 

where 

d , = 4 ( - 1 ) "  

This series converges absolutely and it follows that 

133 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

IH(cp, 0 ) l < M e x p ( - ~ o / 2 )  when 0__< 0 <  1, (4.18) 

for some constant M. Since the matching procedure is carried out for (p~oo in the inner ex- 
pansion, H contributes only exponentially small terms which can be neglected. 

The complex conjugate function 0 + can be found from (4.10) and (4.16) using the Cauchy- 
Riemann equations; thus 

0+ ((P, 0 ) =  (3 cos 2 ~ ) ( P 0 - 0  sin c~ cos c~ 

~ - C O S  2 0~ ~ d, exp [-- (2n+ 1)Tzq~/2] sin [(2n+ 1)~z0/2 ] . (4.19) 
n=0 

The upper bound (4.18) applies to this series as well. 

The matchin9 procedure 

Although the step-by-step matching procedure proposed by Van Dyke [5] could be applied, 
the following equivalent method is used here" i) Let q ~  in the inner expansion of Q and, 
neglecting exponentially small terms, express what remains in terms of (p* ; ii) expand the outer 
expansion of Q for ~o* ~ 0  ; iii) the arbitrary constants appearing in (ii) must be chosen so that 
for every term in (i) a corresponding term appears in (ii). 

Carrying out (i) we obtain 

Qi . . . .  ---r q0* cos c~-(3 cos 2 c~/2)q~*2+ecp * sin c~ cos c~ 

+e2[(3 cos 2 ~ /2)02-c0s  2 a] 

+ e 3 [function of ((p, 0)] + . . .  (4.20) 

Carrying out (ii) we find 

Qouter ~ (P* c o s  0~-  (3 c o s  2 ~/2) ~0" 2 + 0 (q~* 3) 

+ e [ c l  + q~* (s in c~ c o s  ~ - 3 Cl cos c~) + 0 (q~* 2)] 

+e2[(3 cos 2 c~/2)0 2 -  (8 cos 2 c~-6cl sin c~+9 c~)/6 

+ c2 + O (~o*)] + O (e3). (4.21) 

On comparing these expressions, matching is achieved if we choose 

c 1 = 0  and c 2 = c o s  z~/3.  (4.22) 

The terms of 0 (e 3) in (4.20), when written in terms of e, q)*, 0, will not contribute to any of the 
terms already appearing, although additional terms of the form ~o* 3, e ~o* 2, e2 q). etc., will arise. 
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Composite expansions for Q and 0 

Using the inner and outer expansions we may construct composite expansions for Q and 0 
which are uniformly valid to O (e 2) [see Ref. 5, p. 94]. We find 

Q ~ Qo (q)*) + eQ1 ((p*) + e2 [Q2 (q)*, ~) + Q+ (~o, ~9) 

- (3 cos 2 ~/2)(02 - ~o 2) - ~ sin ~ cos e + c o s  a c~] +o(e 2 ] (4.23) 

0 ~ e0o (q0*, 0) + e2 [01 ((p*, ~) + 0 + (~o, ~) - 3 q~O cos 2 ~ + 0 sin ~ cos ~] + o (e2). (4.24) 

These will be used in the next section to deduce various properties of the flow. 

5. Discussion of the results 

It should be noted that the volumetric flux m is not exactly equal to boq o because the real and 
imaginary parts of the analytic function F = Q - iO [see (2.2)] cannot both be specified along the 
line X = 0. The exact volumetric flux crossing the line X = 0 is given by 

m = fi~ U (O, Y ) d Y  = fbo~ q(O, Y) cos O(O, Y ) d Y  = boqo +O(e2) , (5.1) 

where we have used (4.1), (4.2), and (4.6). 
The non-dimensional streamline curvature is given by 

bo/R = e e (?O/&p ~ e2 eQo [30o/O~p,  + ~30 +/0q9 - -  3 0 cos 2 ~] _~ O (E :2 ) 

= 0 (e 2) uniformly. (5.2)  

When cp *~c~,  the coefficient of e 2 tends to zero. 
The pressure derivatives may be found from (2.7) using the chain rule. We find 

(pq2)-, (@/~x) = e cos e -  e 3e [cos O(~?Q/{~o) - sin O(c?Q/~O)], (5.3) 

(pq2)-~ (Op/@) = - ~ sin ~ -  e 3e [sin O(OQ/3~o) - cos 0 (OQ/Ot))]. (5.4) 

Substituting the composite expansions (4.23) and (4.24) and using (3.15), (3.18), and (3.19), we 
obtain 

(pqZ)-l(@/~x) = - e  2 e3eo [ Q ; e -  3o0 sin a +  (OQ+/O~o) 

+3~o cos 2 c~-sin ~ cos c~] +O(e3),  (5.5) 

(pq~ )-  1(@/~3y) = - e sin c~ - e 2 e3eo [ - ~,Q'o 2 + ( ~Q2/~b) + (c3Q+ /O0) (5.6) 

- 3  0 cos ~ ~] +O(e3)- 

Except for the hydrostatic term of O (e) in (5.6), the pressure derivatives are of O (e z) uniformly. 
To summarize we have shown: 

1. The hydraulic approximation allows Q and 0 to be determined uniformly to O (e) by a straight- 
forward iterative procedure provided the initial condition is used to determine an arbitrary 
constant in the second approximation. The third approximation does not satisfy the initial con- 
dition and an inner solution, valid near the leading edge, is required. 
2. The streamline curvature, non-dimensionalized with respect to the initial film thickness, is 
of O(e 2) uniformly and depends to that order on the second order inner solution. 
3. The pressure derivatives, aside from a hydrostatic term of O (e), are of 0 (e z) uniformly. 
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